Some Aspects of the Chemistry of 6,7,8,9-Tetrahydro-3-hydroxy-2-methoxybenzocycloheptan-5-one

By John McLean, Venkateswarlu Peesapati, and George R. Proctor,* Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL

6.7.8.9-Tetrahydro-3-hydroxy-2-methoxybenzocyclohepten-5-one has been converted into several bromoderivatives, acetals, and esters, and into 3-hydroxy-2-methoxybenzocyclohepten-5-one; further, its reduction with LiAlH_{4} has been compared with that of 6,7-dihydro-3-hydroxy-2-methoxybenzocyclohepten-5-one. A synthesis of 6,7 -dihydro-3-hydroxy-8-hydroxycarbonyl-2-methoxybenzocyclohepten-5-one has been developed. Synthesis of 6,7,8,9-tetrahydro-4-methoxy-10H-cyclohepta[e]benzofuran-10-ones, 9 -hydroxy-5,6-dihydro-8-methoxy-4H-benzo[6,7]cyclohept[1,2-c] pyrazole, 5,6 -dihydro- 9 -hydroxy-8-methoxy-4H-benzo [3,4]cyclohept-[1,2-d] isoxazole, and 10-hydroxy-6,7-dihydro-9-methoxybenzo[5,6]cyclohept[1,2-b]indole are described.

During routine anti-tumour screening, ${ }^{1}$ the title compound ($1 ; \mathrm{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{2}}=\mathrm{R}^{3}=\mathrm{H}$) showed some activity in murine P388 tests, so a programme of structural modification was undertaken. Since most of the products were
ketone ($\mathrm{l} ; \mathrm{R}^{\mathbf{1}}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Br}_{2}, \mathrm{R}^{\mathbf{3}}=\mathrm{H}$) reacted with lithium chloride in DMF ${ }^{3}$ to yield the corresponding benzotropone ($2 ; \mathrm{R}=\mathrm{Ac}$) and thence the hydroxymethoxybenzotropone ($2 ; \mathrm{R}=\mathrm{H}$).

(1)

(2)

(3)

(6)

(7)

(5)

(4)

(8)

(9)

(10)

(11)
biologically inactive, we now report on their chemistry in this and the following paper.

In the first place, several hitherto ${ }^{2}$ unknown but straightforward substituted derivatives of the title compound were made by conventional procedures; these included hexanoyl esters [e.g. ($1 ; \mathrm{R}^{1}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CO}$, $\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$)], bromo-compounds (l ; $\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=$ $\mathrm{Br}, \mathrm{Br}_{2} ; \mathrm{R}^{3}=\mathrm{H}$ and Br), and acetals; details are recorded in the Experimental section. Although the 6-bromo-ketone ($\mathrm{I} ; \mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Br}, \mathrm{R}^{3}=\mathrm{H}$) was remarkably resistant to basic reagents, the dibromo-

The title compound ($1 ; \mathrm{R}^{1}=\mathrm{R}^{\mathbf{2}}=\mathrm{R}^{\mathbf{3}}=\mathrm{H}$) behaved normally on oximation and on reduction with lithium aluminium hydride at $0{ }^{\circ} \mathrm{C}$ gave the expected hydroxycompound ($3 ; \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{OMe}$) which is in contrast to some related compounds which sometimes gave dimeric products albeit at higher temperatures. For comparison the isomeric hydroxymethoxy-ketone ${ }^{2}$ (4) was treated with lithium aluminium hydride in tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$; this proved to be a capricious reaction which sometimes yielded the hydroxy-compound (3; $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OH}$), sometimes a dimeric product ${ }^{4}$
$\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}\right)$ [possibly (5)] and sometimes both of these. On the other hand, reduction of the hydroxy-ketone ($6 ; \mathrm{R}=\mathrm{H}$) yielded a mixture of hydroxymethoxytropilidenes $\left(\mathrm{C}_{34} \mathrm{H}_{12} \mathrm{O}_{2}\right)(7)$ and isomers which gave, slowly when set aside or rapidly with DDQ, the red 3-methoxybenzo-cyclohepten-2-one (8) identical with authentic ${ }^{2}$ material.

To obtain derivatives of the title compound substituted at $\mathrm{C}-8$, it is convenient to follow the example of House and his co-workers ${ }^{5}$ and to cyclise the diacid (9) with polyphosphoric acid to the oxo-acid ($10 ; \mathrm{R}=\mathrm{H}$). The diacid (9) was made by condensation of benzylvanillin and diethyl glutarate in presence of potassium t-butoxide, followed by hydrolysis. The structure of the oxo-acid ($10 ; R=H$) is confirmed in particular by i.r. spectroscopy ($v_{\text {max. }} 1655 \mathrm{~cm}^{-1}$) and by comparing the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of the ethyl ester ($10 ; \mathrm{R}=\mathrm{Et}$) with that of the related compound $(6 ; \mathrm{R}=\mathrm{H})$. Thus the alternative isomeric oxoindenecarboxylic acid formulation (11) is excluded.

The title compound can conveniently be used for the annelation of several heterocyclic systems. The O-allyl ethers (12; $\mathrm{R}=\mathrm{H}$ or Cl) undergo Claisen rearrangement to the 4 -allyl compounds ($13 ; \mathrm{R}=\mathrm{H}$ or Cl) which can be converted by PPA treatment into the furano-compounds ($14 ; \mathrm{R}=\mathrm{H}$ or Me), in the former case the intermediate was first ozonised. The hydroxymethylene ketone (15) proved to be a fruitful intermediate for conversion into a number of fused heterocyclic compounds including the pyrazoles $\left[16 ; \mathrm{R}^{1}=\mathrm{H}\right.$ or $\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{H}$, $\mathrm{Ph}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ or $\left.2,4-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]$ which are formulated thus by analogy with literature precedents. ${ }^{6}$ The isoxazoles ($17 ; \mathrm{R}=\mathrm{H}$ or PhCH_{2}) were obtained by

(12)

(13)

(16)

(14)

(15)

(17)

(18)
reaction of compound (15) with hydroxylamine hydrochloride in acetic acid; use of pyridine as solvent for this reaction gave the same products and not the alternative isoxazole isomers as has been reported in some other cases. ${ }^{6,7}$ Finally, application of the Japp-Klingemann
reaction ${ }^{8}$ to compound (15) was successful and the phenyl hydrazone thus obtained was cyclised to the in-dolo-derivatives (18; $\mathrm{R}=\mathrm{H}$ and PhCH_{2}). Interestingly the i.r. carbonyl stretching frequency for these compounds was very low ($\nu_{\text {max }} 1610-1615 \mathrm{~cm}^{-1}$) presumably because of hydrogen bonding with the indole NH group: there are precedents for this phenomenon. ${ }^{9}$

The bromo-ketones ($\mathbf{1} ; \mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Br}, \mathrm{R}^{3}=\mathrm{H}$) and $\left(1 ; R=A c, R^{2}=H, R^{3}=B r\right)$ showed antitumour activity in tissue cultures, ${ }^{1}$ in contrast to all other products which showed no significant activity.

EXPERIMENTAL

3-Acetoxy-9-bromo-6, 7,8,9-tetrahydro-2-methoxybenzocyclo-hepten-5-one ($1 ; \mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Br}$).-3-Acetoxy-6,7,8,9-tetrahydro-2-methoxybenzocyclohepten-5-one (1; $\left.\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right)^{2}(6.6 \mathrm{~g}), N$-bromosuccinimide $(4.8 \mathrm{~g})$, and carbon tetrachloride (150 ml) were refluxed together for 6 h over a $150-\mathrm{W}$ bulb. After filtration and concentration of the solvent, recrystallisation of the residue from etherlight petroleum (b.p. $40-60^{\circ} \mathrm{C}$) gave needles, m.p. $128-$ $129{ }^{\circ} \mathrm{C}(82 \%)$ (Found: C, 51.35; H, 4.65; Br, 24.55. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 51.35 ; \mathrm{H}, 4.6 ; \mathrm{Br}, 24.45 \%$). Heating of this compound with collidine gave 3 -acetoxy-6,7-dihydro-2-methoxybenzocyclohepten-5-one ($6 ; R=A c$), m.p. $86-87{ }^{\circ} \mathrm{C} .{ }^{2}$

6,7-Dihydro-3-hydroxy-2-methoxybenzocyclohepten-5-one (6; $\mathrm{R}=\mathrm{H}$).- 3-Acetoxy-6,7-dihydro-2-methoxybenzocyclo-hepten-5-one ($6 ; \mathrm{R}=\mathrm{Ac}$) was stirred at $20{ }^{\circ} \mathrm{C}$ with alcoholic aqueous sodium hydroxide (8%, excess) for 24 h . The phenolic product was obtained in the usual way and crystallised from dichloromethane-light petroleum (b.p. 60-80 ${ }^{\circ} \mathrm{C}$) as needles (68%), m.p. $89{ }^{\circ} \mathrm{C}$ (Found: C, $70.3 ; \mathrm{H}, 5.75$. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.55 ; \mathrm{H}, 5.9 \%$); the ${ }^{13} \mathrm{C}$ n.m.r. spectrum showed 12 peaks: 200.7, 150.3, 144.6, 131.5, $131.15,130.6,129.7,116.1,113.4,55.9,42.3$, and 23.2 p.p.m.

Reduction of 6,7-Dihydro-3-hydroxy-2-methoxybenzocyclo-hepten-5-one ($6 ; \mathrm{R}=\mathrm{H}$).-The title compound (1 g), lithium aluminium hydride (0.9 g), and tetrahydrofuran (40 ml) were stirred together for 6 h under N_{2} at $20{ }^{\circ} \mathrm{C}$. After the usual work-up and chromatography on neutral alumina, a mixture (0.5 g) of isomers (t.l.c. and n.m.r.) was obtained, m.p. $100-102{ }^{\circ} \mathrm{C}$ (light petroleum) (Found: C, 74.9; H, $6.65 \% ; M^{+}$, 188.0828. $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.85 ; \mathrm{H}$, $6.35 \% ; M, 188.0837$). After being set aside for 3 years, these crystals were pink and t.l.c. showed the presence of 3 -methoxybenzocyclohepten-2-one (8); ${ }^{2}$ reaction of the compound with DDQ in dichloromethane caused very rapid conversion into the red enone (8), ${ }^{2} \mathrm{~m} . \mathrm{p} .143-144{ }^{\circ} \mathrm{C}$.

Dimethyl Acetal of 3-Acetoxy-6,7,8,9-tetrahydro-2-methoxy-benzocyclohepten-5-one ($1 ; \quad \mathrm{R}^{1}=\mathrm{Ac} ; \quad \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$).Treatment of the ketone (2 g), methyl orthoformate (2.66 ml), toluene- p-sulphonic acid (0.08 g), and dry methanol (50 ml) at reflux for 3 h , gave the product (1.95 g) as needles, m.p. $96-98{ }^{\circ} \mathrm{C}$ (from benzene) (Found: C, 65.25; H, 7.4. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 7.5 \%$), $\tau 2.6(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $3,35(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.95\left[6 \mathrm{H}, \mathrm{s},(\mathrm{OMe})_{2}\right]$, $7.2(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 7.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, and $8.15(6 \mathrm{H}, \mathrm{m}$, $6-$, $7-$, and $8-\mathrm{H})$. The diethyl acetal was made similarly and had m.p. 98- $100{ }^{\circ} \mathrm{C}$ (Found: C, 66.1; H, 8.05. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\mathrm{C}, 66.15 ; \mathrm{H}, 8.05 \%)$.

3-Acetoxy-6-bromo-6,7,8,9-tetrahydro-2-methoxybenzo-cyclohepten-5-one $\left(1 ; \quad \mathrm{R}^{1}=\mathrm{Ac}, \quad \mathrm{R}^{2}=\mathrm{Br}, \quad \mathrm{R}^{3}=\mathrm{H}\right) .-3$ -

Acetoxy-6,7,8,9-tetrahydro-2-methoxybenzocyclohepten-5one ($1 ; \mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) (1.3 g), phenyltrimethylammonium tribromide (1 g), and THF (25 ml) were stirred together for 4 h , and then concentrated to give a product which recrystallised from dichloromethane-light petroleum (b.p. $60-80^{\circ}$) as needles, m.p. $128-130^{\circ} \mathrm{C}(1.3 \mathrm{~g})$ (Found: C, $51.35 ; \mathrm{H}, 4.65 ; \mathrm{Br}, 24.55 . \quad \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 51.35$; $\mathrm{H}, 4.6 ; \mathrm{Br}, \mathbf{2 4 . 4 5 \%}$). Treatment of the starting material with bromine in chloroform yielded the same product which was unaffected by treatment with collidine at $125^{\circ} \mathrm{C}$ for 8 h.

Oxime of 6,7,8,9-Tetrahydro-3-hydroxy-2-methoxybenzo-cyclohepten-5-one ($1 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$).-This was obtained using hydroxylamine hydrochloride in refluxing ethanol and had m.p. $189-192{ }^{\circ} \mathrm{C}$ (Found: C, 64.95; H, $6.35 ; \mathrm{N}, 6.75 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 65.15 ; \mathrm{H}, 6.7$; N , 6.35%).

6,7,8,9-Tetrahydro-3,5-dihydroxy-2-methoxybenzocycloheptene (3; $\left.\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{OMe}\right)$.-The hydroxy-ketone (1 ; $\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right)(3.0 \mathrm{~g})$, lithium aluminium hydride $(0.9 \mathrm{~g})$, and dry THF (100 ml) were stirred together at $0^{\circ} \mathrm{C}$ for 6 h and $20^{\circ} \mathrm{C}$ for 18 h . The usual work-up ${ }^{4}$ gave the product which recrystallised from benzene-ethyl acetate as needles, m.p. $131-133{ }^{\circ} \mathrm{C}(2.8 \mathrm{~g})$ (Found: 68.8; H, 7.8\%; $M^{+}, 208.1075 . \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.3 ; \mathrm{H}, 7.75 \% ; M$, 208.1099).

Reduction of 6,7,8,9-Tetrahydro-2-hydroxy-3-methoxybenzo-cyclohepten-5-one (4).-(a) The hydroxy-ketone (3.5 g), ${ }^{2}$ lithium aluminium hydride (0.9 g), and dry THF (100 ml) were stirred at $0^{\circ} \mathrm{C}$ for 5 h and at $20^{\circ} \mathrm{C}$ for 18 h . The usual work-up gave 6,7,8,9-tetrahydro-2,5-dihydroxy-3-methoxybenzocycloheptene (3; $\left.\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OH}\right)(3.25 \mathrm{~g})$, m.p. 138-141 ${ }^{\circ} \mathrm{C}$ (dichloromethane) (Found: C, 69.65; H, $7.75 \% ; M^{+}, 208.1096 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.3 ; \mathrm{H}$, $7.75 \% ; M, 208.1099$). Heating of this material with toluene p-sulphonic acid in benzene yielded 6,7-dihydro-3-hydroxy-2methoxybenzocycloheptene, m.p. $104{ }^{\circ} \mathrm{C}$ (from light petroleum) (Found C, 76.0, H, 7.3\%; $M^{+}, 190.0996 . \quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, $75.85 ; \mathrm{H}, 7.45 \%$; $M, 190.0994$). Catalytic hydrogenation of the latter gave 6,7,8,9-tetrahydro-3-hydroxy-2methoxybenzocycloheptene, m.p. $108{ }^{\circ} \mathrm{C}$ (lit.,$^{10} 110^{\circ} \mathrm{C}$) identical to that previously obtained.
(b) Repetition of the experiment but allowing the temperature to rise above $0{ }^{\circ} \mathrm{C}$ during the first hour, led to isolation of crystalline material, m.p. $158-159{ }^{\circ} \mathrm{C}$ (Found: C, 75.4; $\mathrm{H}, 7.35 \%$; $M^{+} 380.2005 . \quad \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$ requires C, $75.75, \mathrm{H}$, 7.4%; $M, 380.1987)$, $\tau 3.30(1 \mathrm{H}, \mathrm{s}$, aryl), $3.32(1 \mathrm{H}, \mathrm{s}$, aryl), $3.35(1 \mathrm{H}, \mathrm{s}$, aryl), $3.46(1 \mathrm{H}, \mathrm{s}$, aryl), $3.9(1 \mathrm{H}, \mathrm{s}$, olefinic), $4.5(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchangeable), $4.6(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchangeable), $6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.25(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.5(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 7.2-7.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C} \mathrm{H}_{2}\right)$, and $7.75-8.5\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$.

3-n-Hexanoyl-6,7,8,9-tetrahydro-2-methoxybenzocyclo-hepten-5-one ($1 ; \mathrm{R}^{1}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CO}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$). -The hydroxy-ketone ($1 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) (3 g), n -hexanoyl chloride (5 g), anhydrous potassium carbonate (15 g), and dry acetone were refluxed together for 4 h . The crude product was chromatographed on silica gel and crystallised from light petroleum (b.p. $60-80^{\circ}$) to give prisms, m.p. $65-67{ }^{\circ} \mathrm{C}(3.2 \mathrm{~g})$ (Found: C, 70.9; H 7.95. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, $71.05 ; \mathrm{H}, 7.9 \%$).

9-Bromo-3-n-hexanoyl-6, 7, 8, 9-tetrahydro-2-methoxybenzo-cyclohepten-5-one ($\mathbf{1} ; \mathrm{R}^{1}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CO} ; \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Br}$). -The previous ester (2 g), N-bromosuccinimide (1.4 g), and carbon tetrachloride $(100 \mathrm{ml})$ were refluxed together as above. The usual work-up gave the product (90%), m.p.

126-128 ${ }^{\circ} \mathrm{C}$ (Found: C, 56.3; H, 6.0; $\mathrm{Br}, 20.65 . \mathrm{C}_{18} \mathrm{H}_{23}$ BrO_{4} requires C, $\left.56.45 ; \mathrm{H}, 6.05 ; \mathrm{Br}, 20.85 \%\right)$.

3-n-Hexanoyl-6,7-dihydro-2-methoxybenzocyclohepten-5one ($6 ; \mathrm{R}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CO}$).-The previous bromo-ketone (2.5 $\mathrm{g})$ and collidine $(20 \mathrm{ml})$ were held at $120^{\circ} \mathrm{C}$ for 3 h . The usual work-up gave a liquid, b.p. $200{ }^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}(2 \mathrm{~g})$ (Found: C, $71.35 ; \mathrm{H}, 7.2 . \quad \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.55 ; \mathrm{H}$, 7.35%).

3-Acetoxy-6,6-dibromo-6,7,8,9-tetrahydro-2-methoxybenzo-cyclohepten-5-one $\left(1 ; \quad \mathrm{R}^{1}=\mathrm{Ac} ; \quad \mathrm{R}^{2}=\mathrm{Br}_{2}, \quad \mathrm{R}^{3}=\mathrm{H}\right)$.Bromine (4 g) in carbon tetrachloride (5 ml) was added dropwise to a stirred solution of the acetoxy-ketone (1; R $=\mathrm{Ac}$; $\left.\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right)(2.25 \mathrm{~g})$ in carbon tetrachloride (25 ml) during 3 h . After being washed with aqueous sodium hydrogen carbonate solution, the solvent was removed and the product recrystallised from ethanol to yield a solid, m.p. $164-166^{\circ} \mathrm{C}$ (3.3 g) (Found: C, 41.95; H, 3.45. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{4}$ requires C, $41.45 ; \mathrm{H}, 3.45 \%$), $\nu_{\text {max. }}$ (KBr) $1755(\mathrm{Ac})$ and $1660(\mathrm{C}=\mathrm{O})$ cm^{-1}; $\tau 2.9(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.4(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.1-7.4(4 \mathrm{H}, \mathrm{m}, 7$ and $9-\mathrm{H}), 7.7(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, and $7.8-8.1$ ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$).

3-Acetoxy-2-methoxybenzocyclohepten-5-one ($2 ; \mathrm{R}=\mathrm{Ac}$).The dibromide (2 g) from above, anhydrous lithium chloride $(0.8 \mathrm{~g})$, and dry DMF (40 ml) were refluxed together under nitrogen for 3 h . The usual work-up ${ }^{3}$ gave the product $(0.9$ g) from benzene as needles, m.p. $79-80^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 69.15$; $\mathrm{H}, 4.9 \quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, $68.9 ; \mathrm{H}, 4.95 \%$), $\nu_{\max .}(\mathrm{KBr})$ $1760(\mathrm{Ac})$ and $1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}, \tau 2-3.5(6 \mathrm{H}, \mathrm{m}$, aryl + olefinic), $6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$.

3-Hydroxy-2-methoxybenzocyclohepten-5-one ($2 ; \mathrm{R}=\mathrm{H}$). -The acetate (0.25 g) from above was treated with alcoholic aqueous sodium hydroxide (8%, excess) at $80^{\circ} \mathrm{C}$ for 30 min . and worked up as usual to give colourless solid, m.p. $220^{\circ} \mathrm{C}$ (0.17 g from ethanol) (Found: C, 71.55; H, 5.1. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.35 ; \mathrm{H}, 5.0 \%$), $\nu_{\max }(\mathrm{KBr}) 3250(\mathrm{OH})$ and $1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\tau\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.05-2.85(6 \mathrm{H}, \mathrm{m}$, aryl + olefinic), and $6.0(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$.

Reaction of Diethyl Glutarate with Benzylvanillin.5Diethyl glutarate (30 g), benzylvanillin (38.6 g), and t butyl alcohol (150 ml) were added dropwise to the solution obtained by dissolution of potassium (12 g) in t-butyl alcohol (200 ml). After 16 h , the reaction mixture was worked up as usual to give a gum which was stirred for 18 h with aqueous sodium hydroxide $(8 \%, 600 \mathrm{ml})$. Extraction of the acidic material and crystallisation from ethyl acetate yielded the diacid (9) as a powder (30 g), m.p. $208-210{ }^{\circ} \mathrm{C}$ (Found: C, 67.0; H, 5.55. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.4 ; \mathrm{H}$, $5.65 \%), v_{\text {max. }}(\mathrm{KBr}) 1675 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1585 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

6,7-Dihydro-3-hydroxy-8-hydroxycarbonyl-2-methoxy-benzocyclohepten-5-one ($10 ; \mathrm{R}=\mathrm{H}$).—The diacid (2 g) from above and polyphosphoric acid (100 g) were stirred together at $90{ }^{\circ} \mathrm{C}$ for 1 h . The usual work-up followed by chromatography on silica (elution with 2% methanol in chloroform) gave (from ethyl acetate) a powder (700 mg), m.p. $245{ }^{\circ} \mathrm{C}$ (Found: C, 62.4; H, 4.75\%; $M^{+} \mathbf{2 4 8 . 0 9 3 0} . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 62.9 ; \mathrm{H}, 4.85 \% ; M, 248.0950)$, $\nu_{\text {max }}(\mathrm{KBr}) 3400 \mathrm{br}$ $(\mathrm{OH}), 1724\left(\mathrm{CO}_{2} \mathrm{H}\right), 1655(\mathrm{C}=\mathrm{O})$, and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. The ethyl ester was obtained using $\mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol and had m.p. $135{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 65.5 ; \mathrm{H}, 5.75 . \quad \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C, $65.25 ; \mathrm{H}, 5.85 \%$) ; the ${ }^{13} \mathrm{C}$ n.m.r. spectrum showed 15 peaks: 199.2, 167.5, 150.0, 139.4 (2), 132.75, 131.05, 128.3, $116.7,115.0,61.2,56.1,41.9,21.7$, and 14.3 p.p.m.

3-Allyloxy-6,7,8,9-tetrahydro-2-methoxybenzocyclohepten-5-one (12; $\mathrm{R}=\mathrm{H}$).-The hydroxy-ketone ($1 ; \mathrm{R}^{1}=\mathrm{R}^{2}=$ $\left.\mathrm{R}^{3}=\mathrm{H}\right)(4 \mathrm{~g})$, allyl bromide (4 ml), anhydrous potassium
carbonate (20 g), and dry acetone (100 ml) were refluxed together for 6 h . The usual work-up gave the product $(4.5 \mathrm{~g})$ as prisms (from light petroleum), m.p. $46-47{ }^{\circ} \mathrm{C}$, (Found: C, 73.55; H, 7.4. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.25$; H , $7.35 \%), \nu_{\text {max. }}(\mathrm{KBr}) 1655(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\tau 2.8(1 \mathrm{H}, \mathrm{s}$, aryl), $3.5(1 \mathrm{H}, \mathrm{s}$, aryl), $4.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}=), 4.7-4.95(2 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CH}_{2}\right), 5.5\left(2 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{2}\right), 6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.15-7.45(4$ $\mathrm{H}, \mathrm{m}, \mathrm{H}-6+\mathrm{H}-9)$, and $8.15-8.35(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7+\mathrm{H}-8)$.

4-Allyl-6, 7, 8, 9-tetrahydro-3-hydroxy-2-methoxybenzocyclo-
hepten-5-one (13; $\mathrm{R}=\mathrm{H}$).-The previous o-allyl ether (12; $\mathrm{R}=\mathrm{H})(1 \mathrm{~g})$ was held at $200^{\circ} \mathrm{C}$ in vacuo (1 mmHg) for 3 h. After cooling, the solid crystallised from benzene as prisms (0.95 g), m.p. $140-141{ }^{\circ} \mathrm{C}$ (Found: C, 73.2; H, 7.5 . $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.25 ; \mathrm{H}, 7.35 \%$), $\nu_{\text {max. }}(\mathrm{KBr}) 3300$ (OH) and $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}, \tau 3.65(1 \mathrm{H}, \mathrm{s}$, aryl), $4.25(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{s}$, exchangeable OH$), 5.16(2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.55\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $7.3-7.6(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6+\mathrm{H}-9)$, and $8.2-8.45(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ $+\mathrm{H}-8$).

6,7,8,9-Tetrahydro-4-methoxy-10H-cyclohepta[e]benzo-furan-10-one ($14 ; \mathrm{R}=\mathrm{H}$).-The previous C-allyl compound (13; $\mathrm{R}=\mathrm{H} ; 0.5 \mathrm{~g}$) in dichloromethane at $-40{ }^{\circ} \mathrm{C}$ was treated with a stream of ozone for 6 h . The crude product obtained as usual was stirred with polyphosphoric acid (10 g) at $95^{\circ} \mathrm{C}$ for 45 min and poured into ice. After extraction and chromatography on alumina, elution (ethyl acetatebenzene) gave the product (150 mg), m.p. $92-94{ }^{\circ} \mathrm{C}$ (from benzene) (Found: C, 73.35; H, 6.6\%; $M^{+} 230.0922$. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, $73.1 ; \mathrm{H}, 6.2 \% ; M, 230.0943$), $\nu_{\text {max. }}$ (KBr) $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \tau 2.38(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{H}-1)$, $3.65(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{H}-2)$, $3.4(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.0(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.8-7.4(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}+9-\mathrm{H})$, and $8.0-8.7(4 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}+8-\mathrm{H})$.

3-(2-Chloroallyloxy)-6, 7,8,9-tetrahydro-2-methoxybenzo-
cyclohepten-5-one (12; $\mathrm{R}=\mathrm{Cl}$).-The hydroxy-ketone (1 ; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) (5 g), 2,3-dichloropropene (10 ml), potassium iodide (2 g), anhydrous potassium carbonate (20 $\mathrm{g})$, and dry acetone (200 ml) were refluxed together for 10 h . The usual work-up gave the product (6.2 g) (from benzenelight petroleum) having m.p. $58-59{ }^{\circ} \mathrm{C}$ (Found: C, 64.2; H, 6.2 ; $\mathrm{Cl}, 12.5 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 64.3 ; \mathrm{H}, 6.1 ; \mathrm{Cl}$, $12.65 \%)$, $\tau 2.9(1 \mathrm{H}, \mathrm{s}$, aryl), $3.45(1 \mathrm{H}, \mathrm{s}$, aryl), 4.52 and 4.7 $\left(2 \mathrm{H}, 2 \mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{CCl}=\mathrm{CH}_{2}\right), 5.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.17$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $7.1-7.45(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}+9-\mathrm{H})$, and $8.1-8.4$ $(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+8-\mathrm{H})$.

4-(2-Chloroallyl)-6,7,8,9-tetrahydro-3-hydroxy-2-methoxy-benzocyclohepten-5-one ($13 ; \mathrm{R}=\mathrm{Cl}$).-The above chloroallyl ether (2.5 g) was kept in NN -dimethylaniline (4 ml) at $205^{\circ} \mathrm{C}$ for 3 h under N_{2}. The usual work-up yielded the product $(2.4 \mathrm{~g})$ (from benzene-light petroleum), m.p. $130-131{ }^{\circ} \mathrm{C}$ (Found: C, 64.3; H, 6.15; Cl, 12.65\%; $M^{+}, 280.0865$. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 64.3, \mathrm{H}, 6.1 ; \mathrm{Cl}, 12.65 \% ; M$, 280.0866) ; $\nu_{\max }(\mathrm{KBr}) 3350-3200(\mathrm{OH})$ and $1670(\mathrm{C}=\mathrm{O})$ cm^{-1}; $\tau 3.6(1 \mathrm{H}, \mathrm{s}$, aryl), $4.4(1 \mathrm{H}, \mathrm{s}$, exchangeable OH$)$, 4.95 and $5.06\left(2 \mathrm{H}, 2 \mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{CCl}=\mathrm{CH}_{2}\right), 6.18(2 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CH}_{2} \mathrm{CCl}=\right), 6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.3-7.6(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}+$ $9-\mathrm{H})$, and $8.2-8.45(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+8-\mathrm{H})$.
6,7,8,9-Tetrahydro-4-methoxy-2-methyl-10H-cyclohepta[e]-benzofuran-10-one ($14 ; \mathrm{R}=\mathrm{Me}$).-The above C-chloroallyl compound (0.3 g) was stirred in polyphosphoric acid for 45 min at $100^{\circ} \mathrm{C}$. The usual work-up followed by preparative t.l.c. $\left[\mathrm{SiO}_{2} /\right.$ chloroform-benzene(7:3)] gave the product $\left(100 \mathrm{mg}\right.$), m.p. $78-80^{\circ} \mathrm{C}$ (Found: C, $73.3 ; \mathrm{H}, 7.0 \% ; M^{+}$, 244.1104. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.7 ; \mathrm{H}, 6.6 \% ; M$, 244.1099) , $v_{\text {max. }}(\mathrm{KBr}) 1655(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\tau 3.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$, $3.6(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 6.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.05-7.4(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ $+9-\mathrm{H}), 7.6(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $8.1-8.4(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+8-\mathrm{H})$.

3-Benzyloxy-6,7,8,9-tetrahydro-2-methoxybenzocyclohep-
ten-5-one $\left(1 ; \mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right)$.-The hydroxyketone ($1 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) (12 g), benzyl chloride (12 ml), anhydrous potassium carbonate (20 g), and dry acetone (200 ml) were refluxed together for 6 h . The usual work-up followed by recrystallisation from benzene-light petroleum (b.p. $60-80{ }^{\circ} \mathrm{C}$) gave the product (12.5 g) as needles, m.p. $66-86{ }^{\circ} \mathrm{C}$ (Found: C, 76.45; H, 6.75. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.85 ; \mathrm{H}, 6.8 \%$).
3-Benzyloxy-6,7,8,9-tetrahydro-6-hydroxymethylene-2-methoxybenzocyclohepten-5-one (15).-A solution of the above benzyloxy-ketone (5.4 g), ethyl formate (5.2 ml), and dry toluene (80 ml) was cooled to $0{ }^{\circ} \mathrm{C}$ and added to a suspension of sodium methoxide (from 3.8 g of sodium) in toluene $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After 2 h at $0^{\circ} \mathrm{C}$ and 24 h at $20^{\circ} \mathrm{C}$, the product was obtained by extraction with sodium hydroxide (10%, aqueous) and acidification. Recrystallisation from ether-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) gave pale brown needles (4.3 g), m.p. $74-75{ }^{\circ} \mathrm{C}$ (Found: C, 73.9; H, 6.1. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, 74.15; H, 6.2%), v $v_{\text {max. }}(\mathrm{KBr}) 1635$ $(\mathrm{C}=\mathrm{O})$ and $1605(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\tau-4.8 \mathrm{br}$ (1 H , exchangeable, OH), $2.25\left(1 \mathrm{H}, \mathrm{d}\right.$, collapsing to s with $\mathrm{D}_{2} \mathrm{O}$, vinylic), $2.7-3(6 \mathrm{H}, \mathrm{m}, 5$ aryl $+4-\mathrm{H}), 3.46(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.0(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.38-7.55(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$, and $7.95-8.25(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}+8-\mathrm{H})$.
9-Benzyloxy-5,6-dihydro-8-methoxy-4H-benzo[6,7]cyclo-
hept $[1,2-\mathrm{c}]$ pyrazole ($\mathbf{1 6} ; \mathrm{R}^{\mathbf{1}}=\mathrm{PhCH}_{2}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}$).—The hydroxymethylene ketone ($15 ; 0.45 \mathrm{~g}$), hydrazine hydrate $(0.65 \mathrm{ml} ; 99 \%)$, and methanol (25 ml) were stirred together for 2 h at $20^{\circ} \mathrm{C}$. The usual work-up provided crystals $(0.35$ g), m.p. 114-115 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 74.6; H, 6.2 ; $\mathrm{N}, 8.5 \% ; M^{+}, 320.1521$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.05$; $\mathrm{H}, 6.3 ; \mathrm{N}, 8.75 \% ; M, 320.1525)$, $v_{\max .}(\mathrm{KBr}) 3165(\mathrm{NH}) \mathrm{cm}^{-1}$; $\tau-0.3 \mathrm{br}(1 \mathrm{H}$, exchangeable, NH), 2.8-3.1 ($7 \mathrm{H}, \mathrm{m}$, aryl + $3-\mathrm{H}+10-\mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 5.3\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{Ph}\right), 6.3$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.3-7.55(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}+6-\mathrm{H})$, and $8.0-8.3$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$. Treatment of this product with acetic acid containing concentrated hydrochloric acid (1\%) gave the corresponding 5,6-dihydro-9-hydroxy-8-methoxy-4Hbenzo[6,7]cyclohept[$1,2-c]$ pyrazole ($16 ; \quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$), m.p. 186-187 ${ }^{\circ}$ (Found: C, 67.75; H, 6.1; N, 12.15. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $\left.67.9 ; \mathrm{H}, 6.15 ; \mathrm{N}, 12.15 \%\right)$.

In similar fashion were made the following:

Structure (16)	
R^{1}	R^{2}
PhCH_{2}	Ph
H	Ph
PhCH_{2}	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
H	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
PhCH_{2}	$2,4-\mathrm{CiNO}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
H	$2,4-$ diNO$_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

	Found				Required			
M.p. $\left({ }^{\circ} \mathrm{C}\right)$	C(\%)	H(\%)	N(\%)	M	C(\%)	H(\%)	N(\%)	M
150 *	74.95	6.25	6.9	396.1826	74.45	6.35	6.75	396.1838
235	74.0	5.95	9.0		74.5	5.95	9.15	
195-197 *	67.8	5.4	8.65	441.1698	68.05	5.5	9.1	441.1688
198	64.6	4.9	11.65		64.9	4.85	11.4	
162-163	63.9	4.75	11.15		64.25	4.55	11.5	
185-187	57.2	4.3	13.8	396.1082	57.5	4.05	14.1	396.1070

9-Benzyloxy-5,6-dihydro-8-methoxy-4H-benzo $[3,4]$ cyclohept $[1,2-\mathrm{d}]$ isoxazole $\left(17 ; \mathrm{R}=\mathrm{PhCH}_{2}\right)$.-The hydroxymethylene ketone ($15 ; 0.25 \mathrm{~g}$), hydroxylamine hydrochloride (0.05 g), and acetic acid (6 ml) were refluxed together for 6 h . The usual work-up gave material which was separated by preparative t.l.c. on silica using benzene-ethyl acetate ($50: 50$). The first band yielded the desired product $(0.15 \mathrm{~g}$) (from benzene), m.p. $160^{\circ} \mathrm{C}$ (Found: C, 75.1; H, 6.0; N, $4.15 \% ; M^{+}, 321.1360 . \quad \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C, $74.85 ; \mathrm{H}$, $5.95 ; \mathrm{N}, 4.35 \%$; $M, 321.1365)$, $2.12(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 2.62$ ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$), $2.8(5 \mathrm{H}, \mathrm{m}$, aryl), $3.49(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 4.96(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.22(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7.19-8.25[6 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right]$. The second band gave 5,6-dihydro-9-hydroxy-8-methoxy-4H-benzo $[3,4]$ cyclohept $[1,2-\mathrm{d}]$ isoxazole ($17 ; \mathrm{R}=\mathrm{H}$) $(0.05 \mathrm{~g})$ from benzene-ethyl acetate as prisms, m.p. 208$210{ }^{\circ} \mathrm{C}$ (Found: C, $67.65 ; \mathrm{H}, 5.65 ; \mathrm{N}, 5.85 \%$; M^{+}, 231.0899. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{C}, 67.6 ; \mathrm{H}, 5.65 ; \mathrm{N}, 6.05 \%$; $M, 231.0895), v_{\text {max. }}(\mathrm{KBr}) 3410(\mathrm{OH}) \mathrm{cm}^{-1} ; \tau 1.98(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 4.5 \mathrm{br}(1 \mathrm{H}, \mathrm{s}$, exchangeable, OH), $6.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7.12-8.1[6 \mathrm{H}$, $\mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}$.

The latter compound was also obtained by hydrolysis of the former using concentrated hydrochloric acid in acetic acid.

3-Benzyloxy-6,7,8,9-tetrahydro-2-methoxybenzocyclohep-tene-5,6-dione 6-Monophenylhydrazone.-A solution of benzenediazonium chloride (from 0.9 g aniline) was added during 20 min at $0{ }^{\circ} \mathrm{C}$ to a stirred mixture of hydroxymethylene ketone ($15,3.3 \mathrm{~g}$), sodium acetate (2 g), methanol $(40 \mathrm{ml})$, water $(7 \mathrm{ml})$, and benzene $(15 \mathrm{ml})$. The precipitated solid was washed with water and recrystallised from ethanol to give needles (2.75 g), m.p. $130-132{ }^{\circ} \mathrm{C}$ (Found: C, $74.9 ; \mathrm{H}, 6.1 ; \mathrm{N}, 6.9 . \quad \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}$, 6.0 ; $\mathrm{N}, 7.0 \%$), $\tau 2.6-2.95$ ($11 \mathrm{H}, \mathrm{m}$, aryl), 3.48 ($1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}), 4.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.5 \mathrm{br}(1 \mathrm{H}$, exchangeable, NH$)$, $6.2(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7.25-8.1\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right]$.

8-Benzyloxy-11,12-dihydro-9-methoxybenzo[5,6]cyclohept-[1,2-b]indole (18; $\mathrm{R}=\mathrm{PhCH}_{2}$).-The foregoing phenyl-
hydrazone (1 g), acetic acid (8 ml), and concentrated hydrochloric acid $(0.9 \mathrm{ml})$ were refluxed together for 2.5 h . Workup in the usual fashion gave a yellow solid (0.875 g) consisting of two substances (t.l.c.). Preparative t.l.c. on silica (elution with benzene-ethyl acetate) gave the product (240 mg) as faster-moving component, m.p. $190-191^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 78.75 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.6 . \quad \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 78.3 ; \mathrm{H}$, $5.4 ; \mathrm{N}, 3.6 \%), v_{\max }(\mathrm{KBr}) 3300(\mathrm{NH})$ and $1610(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\tau 0.9 \mathrm{br}(1 \mathrm{H}, \mathrm{NH}), 2.4(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.65-2.95(9 \mathrm{H}, \mathrm{m}$, aryl), $3.4(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.12(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.9(4 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}+12-\mathrm{H})$. The slower-moving component (0.55 g) had m.p. $220-221^{\circ} \mathrm{C}$ (ethanol) (Found: C, $73.6 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.4 \%$; M^{+}, 293.1045. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C, 73.7; H, 5.1; N, 4.8\%; M, 293.1052), $v_{\text {max. }}(\mathrm{KBr})$ $3600 \mathrm{br}(\mathrm{OH}), 3300(\mathrm{NH})$, and $1615(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$, $\tau 0.95 \mathrm{br}$ ($1 \mathrm{H}, \mathrm{NH}$), $2.42(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.45-3.5(4 \mathrm{H}, \mathrm{m}$, aryl), 3.4 $(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 4.5 \mathrm{br}(1 \mathrm{H}$, exchangeable, OH$), 6.15(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe})$, and $6.9(4 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}+12-\mathrm{H})$. It was the debenzylated analogue.

We thank the Cancer Campaign for a fellowship and Mrs. L. G. Rees for technical assistance.
[7/2163 Received, 9th December, 1977]

REFERENCES

${ }^{1}$ National Cancer Institute, Bethesda, Md. 20014, U.S.A.
${ }^{2}$ G. R. Proctor and A. H. Renfrew, J. Chem. Soc. (C), 1968, 1187.
${ }^{3}$ E. W. Collington and G. Jones, J. Chem. Soc. (C), 1969, 2656.
${ }^{4}$ D. J. Humphreys and G. R. Proctor, J.C.S. Perkin I, 1972, 722.
${ }^{5}$ H. O. House, V. Paragamian, R. S. Ro, and D. J. Wluka, J. Amer. Chem. Soc., 1960, 82, 1452.
${ }_{6}$ A. Fravolini, G. Grandolini, and A. Martani, Gazzetta, 1973, 103, 755; 1073.
${ }^{7}$ G. R. Proctor and B. M. L. Smith, J.C.S. Perkin I, 1978, 862.
${ }^{8}$ R. R. Phillips, Organic Reactions, 1959, 10, 143.
${ }^{9}$ K. Fujimori and K. Yamane, Bull. Chem. Soc. Japan, 1974, 47, 1951.
${ }_{10}$ G. R. Proctor, J. Chem. Soc., 1964, 4274.

